

Universidade Federal do Ceará Faculdade de Economia, Administração, Atuária e Contabilidade

Departamento de Administração

PLANO DE ENSINO DE DISCIPLINA

Ano/Semestre

1. Identificação					
1.1. Unidade: FEAAC					
1.2. Curso: Administração					
1.3. Nome da Disciplina: OTIMIZAÇÃO DE PROCESSOS INDUSTRIAIS E DE SERVIÇOS					
1.4. Código da Disciplina: ED0418					
1.5. Caráter da Disciplina: () Obrigatória (X) Optativa					
1.6. Regime de Oferta da I	Disciplina:	(X) Semes	tral () A	Anual () Modular
1.7. Carga Horária (CH) Total: 64h	C.H. Teórica: 32h	C.H. Prática: 32h	C.H. EaD:	C.H. Extensão:	C.H. Prática como componente curricular – PCC¹ (apenas para cursos de licenciatura):
1.8. Pré-requisitos: ED0186 - Gestão de Operações II					
1.9. Co-requisitos: Não há.					
1.10. Equivalências: Não h	ıá				
1.11. Professores: Cláudio Carneiro, Mônica Cavalca Lopes.		•	•		-

2. Justificativa

A otimização do processo é a disciplina de ajustar um processo para otimizar (fazer o uso melhor ou mais eficaz) de um conjunto especificado de parâmetros sem violar alguma restrição. Os objetivos mais comuns são minimizar custos e maximizar taxa de transferência e / ou eficiência. Essa é uma das principais ferramentas quantitativas na tomada de decisões industriais. Ao otimizar um processo, o objetivo é maximizar uma ou mais especificações do processo, mantendo todas as outras dentro de suas restrições. Isso pode ser feito usando uma ferramenta de mineração de processo, descobrindo as atividades e gargalos críticos e agindo apenas sobre eles.

Fundamentalmente, existem três parâmetros que podem ser ajustados para afetar o desempenho ideal. Eles são:

- Otimização de equipamentos: Verificar se o equipamento existente está sendo usado ao máximo, examinando os dados operacionais para identificar gargalos no equipamento.

- Procedimentos operacionais: Os procedimentos operacionais podem variar muito de pessoa para pessoa ou de turno para turno. A automação da planta pode ajudar significativamente. Mas a automação não ajudará se os operadores assumirem o controle e executarem a planta manualmente.
- Otimização de controle: Em uma planta de processamento típica, como uma planta química ou refinaria de petróleo, existem centenas ou mesmo milhares de malhas de controle. Cada loop de controle é responsável por controlar uma parte do processo, como manter uma temperatura, nível ou fluxo.

Se o loop de controle não for projetado e ajustado adequadamente, o processo será executado abaixo do ideal. O processo será mais caro de operar e o equipamento se desgastará prematuramente. Para que cada circuito de controle funcione de maneira ideal, é importante identificar os problemas do sensor, da válvula e do ajuste. Os processos devem ser monitorados e otimizados continuamente.

DMAIC é uma sigla em inglês que significa define, measure, analyze, improve e control (ou em português: definir, medir, analisar, melhorar e controlar) e representa um método de melhoria de processos composto por um roteiro que ajuda empresas a resolverem problemas.

O DMAIC é peça chave para colocar em prática projetos de Lean Seis Sigma, e possibilita a empresa otimizar os processos industriais e de serviço. Os principais objetivos do método DMAIC são: Melhorar processos e a gestão da empresa; Buscar a melhoria contínua na gestão e produtos; Melhorar a qualidade de produtos e serviços; Reduzir custos e desperdícios; Aumentar a produtividade.

O principal diferencial do método DMAIC é que ele foca mais na fase do planejamento da melhoria para reduzir as chances de erro e o tempo necessário para a implementação.

3. Ementa

Conceito de seis sigma, conceito de Lean Manufacturing, Ferramentas estatísticas para a qualidade, Controle de Processos, Otimização de Processos, Método de análise e melhoria de processos, Método PDCA (Planejar, Fazer, Controlar e Agir), Método DMAIC (Definir, Medir, Analisar, Melhorar e Controle).

4. Objetivos – Geral e Específicos

Investigar o arcabouço teórico que norteia a otimização de processos. Debater sobre modelos, dimensões, bases instrumentais e indicadores voltados a otimização de processos. Verificar os critérios que definem a melhoria de processos e a competitividade nas empresas. Mostrar a complexidade das inter-relações existentes entre as diversas áreas funcionais da empresa com a função produção, bem como a integração dos diferentes objetivos dessas áreas em uma política gerencial adequada ao interesse da organização. Capacitar os alunos nos conceitos relacionados as ferramentas de melhoria de processos industriais e de serviço.

5. Descrição do Conteúdo/Unidades

Carga Horária

1 CONCEITOS DO SEIS SIGMA E LEAN MANUFACTURING	12 hrs
1.1 Conceito Seis Sigma	
1.2 Conceito Lean Manufacturing	
1.3 Controle da Qualidade	
1.4 Medida da capabilidade do processo	
2 FERRAMENTAS PARA DEFINIÇÃO	15 hrs
2.1 Método DMAIC	
2.2 Project Charter	
2.3 Gráfico Sequencial	
2.4 Método SIPOC	
2.5 Análise SWOT	
2.6 Matriz de seleção de projetos	
2.7 Desdobramento da Função Qualidade	
3 FERRAMENTAS PARA MEDIÇÃO	15 hrs
3.1 Mapeamento de processo	
3.2 Folha de verificação	
3.3 Histogramas	
3.4 Gráficos de controle	
3.5 Diagramas de processo	
3.6 Diagrama de causa-efeito	
3.7 Diagrama de dispersão	
4 FERRAMENTAS PARA ANÁLISE	12 hrs
4.1 Regressão Linear	
4.2 FMEA	
4.3 Matriz de Priorização	
4.4 Brainstorming	
4.5 Diagrama de Afinidade	101
5 FERRAMENTAS PARA MELHORIA E CONTROLE	10 hrs
5.1 Análise de Arvore de Falha	
5.2 Gráfico de Gantt	
5.3 5W2H	
5.4 Procedimento Operacional Padrão e Relatório de Anomalia	

6. Metodologia de Ensino

Aulas expositivas com discussão das partes teóricas com utilização de recursos ilustrativos e práticos. Visitas técnicas em empresas manufatureiras e de serviços. Discussão de casos práticos. Implantação de um Projeto DMAIC para otimização de processos industriais e de serviços.

7. Atividades Discentes

Atividades individuais. Atividades em Equipes. Visitas Técnicas às Empresas onde os projetos DMAIC serão desenvolvidas. Elaboração de um Projeto DMAIC. Elaboração de relatório DMAIC.

8. Avaliação

Provas. Elaboração de um projeto de implantação do Sistema Integrado de Gestão da Qualidade e Meio Ambiente, conforme as normas ISSO 9001:2015 e ISSO 14001:2015. Relatório final do Sistema Integrado de Gestão.

9. Bibliografia Básica e Complementar

BALLESTRERO-AVAREZ, M.E. **Gestão de Qualidade, Produção e Operações**. 2. ed. São Paulo: Ed. Atlas, 2012.

BASU, R. Implementing Quality: A Practical Guide to Tools and Techniques. Thomsom, 2004.

LOUZADA, F.; DINIZ, C.; FERREIRA, P. FERREIRA E. Controle Estatístico de Processos, LTC. Administração da Produção. 2. ed. São Paulo: Saraiva, 2006.
PALADINI, E.P. Gestão da Qualidade no Processo. São Paulo: Editora Atlas, 1995. VIEIRA, S. Estatística para a Qualidade. 2. ed. São Paulo: Editora Campus, 2014.
10. Parecer
Aprovação do Colegiado do Departamento
Aprovação do Colegiado de Coordenação do Curso
//Assinatura do Coordenador